
including 15 page
s of Q/A with Scala

founder Martin Odersky

Scala 2013:
a Pragmatic guide
to Scala adoPtion
in Your Java organization

Scala is a language created by Martin Odersky and his desire to combine
object-oriented and functional programming on the Java Virtual Machine.
Odersky’s previous work on Pizza, GJ, Java generics, the javac compiler
DQG�)XQQHO�HYHQWXDOO\�OHG�WR�WKH�FUHDWLRQ�RI�6FDOD�DQG�LWV�ȴUVW�UHOHDVH�LQ�
2003 at EFPL. Scala is purely object-oriented as every value is an object,
and functional as every function is a value. The successful mix of OOP
and FP paradigms has made the language relatively popular and a “better
Java” for many. It’s also a good language for those looking for Haskell-like
capabilities on the JVM.

Following the language’s rise in popularity, Typesafe was founded in 2011
by the creators of Scala and the Akka middleware, to provide easy to use
packaging of both in the form of the Typesafe Stack, as well as better
development tools and commercial support.

In the last few years there has been some criticism of Scala; it’s mostly
been accused of being too complex. In this report, we opine that the
perceived complexity of Scala actually arises more from the diversity of
the ecosystem rather than the language itself. We then look at a simpler
subset of Scala that is perhaps a good place to start for Java teams who are
considering adopting it in 2013 or later.

We also include an interview with Martin Odersky, creator of Scala,
Chairman and Chief Architect at Typesafe and throughout the report we
have comments from Josh Suereth, also from Typesafe, and author of Scala
in Depth.

introduction

http://epfl.ch/index.en.html
http://typesafe.com/
http://akka.io/
http://manning.com/suereth/
http://manning.com/suereth/

Numerous blog posts during the past year or two have accused Scala of being too complex or highlighting other issues
with Scala adoption. Some of the criticism is fair, but some of it could be targeting almost any JVM language out there. Scala
VHHPV�WR�JHW�PRUH�RI�WKH�ȵDN�EHFDXVH�LWȇV�PRUH�SRSXODU�DQG�SRVVLEO\�pulling ahead of the others.

And also probably because Scala actually is rather complex, but only if you want it to be.
Think of Scala as a swimming pool - there is a deep end and a shallow end; it seems that many people who haven’t learned
WR�VZLP�\HW�MXPS�VWUDLJKW�LQWR�WKH�GHHS�HQG��ΖQHYLWDEO\��DIWHU�VSODVKLQJ�DERXW�IRU�D�ZKLOH�DUH�VXUSULVHG�WR�ȴQG�WKDW�WKHLU�OHJV�
GRQȇW�TXLWH�UHDFK�WKH�ȵRRU��RU�WKDW�WKH\�VDQN�WR�WKH�ERWWRP�DQG�DUH�VWDUWOHG�E\�QRW�EHLQJ�DEOH�WR�EUHDWKH�XQGHUZDWHU�

Why does this happen? Maybe it is hard to distinguish the deep end
from the shallow end - it’s not quite as simple as having a glance and
getting a clear picture of how deep the pool is. Maybe the deep end
VHHPV�PRUH�H[FLWLQJ�DW�ȴUVW��ZKHQ�\RX�KDYHQȇW�JRWWHQ�D�WUXH�WDVWH�RI�LW�
yet.

Stay close to the shallow end?

JoShSuereth:

This is an important point. Scala is not just a “Java++”. There’s a lot of depth to pull out of the
language, and lots you can learn. It doesn’t take a lot to start, but it can be intimidating how much is
out there. You need to be prepared for it to take some time to learn things in the Scala community.
Remember that Scala has been around for many years, and a good portion of its community has
EHHQ�DURXQG�DQG�H[SHULPHQWLQJ�IRU����\HDUV��'RQȇW�JHW�ȵXVWHUHG�LI�QRW�HYHU\WKLQJ�PDNHV�VHQVH��
Wade into the pool and get comfortable before going deeper.

:K\�WDON�DERXW�VXFK�D�GLFKRWRP\�LQ�WKH�ȴUVW�SODFH"�%HFDXVH�WKH�6FDOD�
community is very diverse. It can cater both to newbies and expert type-
safe library designers. Some Scala users come from an object-oriented
programming background (e.g. Java), some come from a functional
programming background (e.g. Haskell).

http://redmonk.com/sogrady/2012/02/08/language-rankings-2-2012/
http://www.scala-lang.org/node/8610
http://www.scala-lang.org/node/8610

JoShSuereth:

The key here is that team productivity is important. Any language can be
introduced in a crippling fashion, regardless of its merits. The same is true with
Scala. When working with a team, getting everyone on board and learning is crucial.

(DFK�6FDOD�WHDP�QHHGV�WR�ȴQG�D�FRPPRQ�VW\OH�WKDW�WKH\�DJUHH�XSRQ��RU�WKH�UHVXOW�ZLOO�EH�D�PHVV��7KH Scala Style Guide might help with this.

This piece is mostly written for those coming from the Java (object-oriented / imperative) school.
6RPH�RI�WKH�VXJJHVWLRQV�DUH�YHU\�PXFK�D�PDWWHU�RI�WDVWH��EDFNJURXQG�DQG�VR�RQ��VR�ZHȇUH�QRW�H[SHFWLQJ�HYHU\RQH�WR�DJUHH�ZLWK�LW��%XW�OHWȇV�
get on with some thoughts, opinions and comments…

Scala blends together these programming styles, but still lets you code mostly in an “impure” imperative or mostly in a
ȊSXUHȋ�IXQFWLRQDO�ZD\��$QG�WKDW�PLJKW�EH�WKH�PDLQ�SUREOHP���WKH�YHU\�GL΍HUHQW�FRGLQJ�VW\OHV�HQDEOHG�E\�6FDOD�PHDQV�
that a lot of code written by people from a school outside of one’s own might seem downright illegible.

http://docs.scala-lang.org/style/

There are some things in the Scala ecosystem that will seem like a foreign
language to someone coming from Java. They may be fun to mess with and
may actually be useful, but if you are trying to adopt Scala in a team of Java
SURJUDPPHUV��WKHVH�WKLQJV�PLJKW�ZRUN�DJDLQVW�\RX��VXFK�DV�ȴQGLQJ�\RXUVHOI�
inadvertently in the deep end. We think the following parts of the Scala ecosystem
are better avoided when just starting out:

1. SBt – Simple Build tool

2. Scalaz

3. category theory

4. libraries that overuse “operator overloading”

5. collections library Source code

6. the cake Pattern

7. the Kingdom of Verbs

8. too Functional or too type Safe code

What to aVoid in the Scala ecoSYStem

7KH�6LPSOH�%XLOG�7RRO��6%7���LV�SHUKDSV�not so simple after all and if you
use it, your build descriptors will be a mishmash of a DSL that uses lots of
special symbols, poorly structured meta-data, and code. For example, to
turn a project into a web project, it was necessary to add this cryptic plug-
in dependency in plugins.sbt:

libraryDependencies <+= sbtVersion(v => “com.github.siasia” %% “xsbt-
web-plugin” % (v+”-0.2.9”))

And then this magic line to build.sbt:

seq(webSettings :_*)

If this seems like black syntax magic to you, just stick with Maven, Ant, or
whatever build tool you used before that has Scala support.

6RPHWLPHV�\RX�PLJKW�EH�PRUH�RU�OHVV�IRUFHG�WR�XVH�6%7��H�J��LI�\RX�XVH�
3OD\�������%XW�GRQȇW�WDNH�LW�WRR�EDGO\�ȃ�6%7�VWLOO�KDV�VRPH�JRRG�LGHDV�LQVLGH�
it. There is hope that it will get better and better, and even support a
Maven mode��%XW�DW�WKH�PRPHQW��LW�OHDYHV�PXFK�WR�EH�GHVLUHG�

1. avoid the SBt

JoShSuereth:

Ζ�NQRZ�YHU\�ZHOO�WKDW�6%7�KDV�D�KLJK�OHDUQLQJ�FXUYH��7KH�YHU\�VLPSOH�ȊFXW�DQG�SDVWHȋ�EXLOGV�ZRUN�ZHOO��EXW�
anything in the intermediate range can take a while to get up to speed. If you’re a beginner this can be a
cause of frustration and despair. When starting, it’s perhaps best to avoid these things.

+RZHYHU��ΖȇG�OLNH�WR�VWDWH�WKDW�6%7�LV�E\�IDU�P\�IDYRULWH�EXLOG�WRRO��ΖȇYH�KDG�WR�FXVWRPL]H�PDQ\�0DYHQ�SOXJLQV�
IRU�SDVW�EXLOGV��ZRUN�ZLWK�TXLWH�D�IHZ�$17�EXLOGV��HYHQ�XVHG�$XWRPDNH��FPDNH��PDNH�DQG�IULHQGV�bbΖȇP�VROG�
�����RQ�6%7��ΖI�ZH�FDQ�JHW�WKLV�OHDUQLQJ�FXUYH�GRZQ�WR�DFFHSWDEOH�OHYHOV��ΖbEHOLHYH�HYHU\RQH�ZLOO�VHH�WKH�
EHQHȴWV��ΖȇP�HYHQ�JRLQJ�VR�IDU�DV�WR�ZULWH�D�ERRN�RQ�6%7�FRYHULQJ�ΖQWURGXFWRU\b�!�$GYDQFHG�XVDJH�

:KHQHYHU�\RX�KDYH�D�FRPSOH[�EXLOG�HQYLURQPHQW��6%7�UHDOO\�PDNHV�UHSHDWDEOH�EXLOGV�VLPSOH��:HȇUH�
ZRUNLQJbIXULRXVO\�WR�LPSURYH�WKDW�PLGGOH�JURXQG�OHDUQLQJ�FXUYH��Ζ�WKLQN�LWȇV�D�SURMHFW�WR�SD\�DWWHQWLRQ�WR�

http://www.quora.com/Scala/Is-sbt-the-best-way-to-manage-Scala-projects-if-your-first-priority-is-developer-efficiency
https://twitter.com/#!/djspiewak/status/174260272880558081
https://github.com/harrah/xsbt/issues/287

If you are thinking about using Scalaz��VWRS�ZKLOH�\RX�VWLOO�KDYH�\RXU�VDQLW\��
And don’t get into arguments with people who imply that you are dumb
IRU�QRW�XVLQJ�LW��WKHVH�VWUDQJHUV�FRPH�IURP�D�FRPSOHWHO\�GL΍HUHQW�VFKRRO�RI�
WKRXJKW�WKDW�YDOXHV�HQWLUHO\�GL΍HUHQW�WKLQJV�Ȃ�SXUH�IXQFWLRQDO�SURJUDPPLQJ�
with very high-level abstractions represented by obscure symbols like <:::,
���!����!������������� ���DQG�VR�RQ�Ȃ�WKHUH�DUH�+81'5('6�RI�WKHVH�
Also, run away if you hear anyone casually utter words like: applicative,
bifunctor, cokleisli, endofunctor, kleisli, semigroup, monad, monoid. Ok,
some of them are maybe not so scary, but what I’m getting at is that you
should also stay away from #3…

3. avoid category theory
Category theory is an area of mathematics full of abstractions that apply
to programming in interesting and sometimes useful ways, but it will not
immediately help you write better programs that are easy to understand.
(YHQWXDOO\��\RX�PLJKW�ȴQG�XVHIXO�WKLQJV�WKHUH��EXW�PD\EH�LWȇV�EHWWHU�WR�VWD\�
clear of category theory until you are really really sure that you and your
WHDP�ZDQW�WR�JR�WKHUH�DQG�ZLOO�EHQHȴW�IURP�LW��WKH�VDPH�JRHV�IRU�6FDOD]��
above).

4. avoid libraries that overuse

 “operator overloading”
Scala doesn’t have real operator overloading, as most operators are actually
PHWKRGV��%XW�LW�DOORZV�\RX�WR�XVH�PDQ\�V\PEROV�LQ�PHWKRG�QDPHV��This is
not bad, because it is useful in places, such as mathematical code, but some
libraries take “advantage” of that feature and use easy-to-type symbols (or
HYHQ�QRW�VR�HDV\�WR�W\SH�V\PEROV��WR�PHDQ�VRPHWKLQJ�HQWLUHO\�GL΍HUHQW�WKDQ�
what those symbols commonly represent.

Again, Scalaz is the main culprit here, but there are many other libraries
whose authors have been a bit overly happy-go-lucky with their use
RI�V\PEROV�LQ�DOO�WKH�ZURQJ�SODFHV��6%7�HUUV�KHUH�DV�ZHOO��DV�DOUHDG\�
mentioned. Some examples:

 Periodic table of dispatch operators
 8VLQJ�SDUVHU�FRPELQDWRUV�WR�extract SQL query results (scroll down to
����Ȋ8VLQJ�WKH�3DUVHU�$3Ζȋ�
 Applicative example in Scalaz

5. avoid the collections library source code
Don’t dig too deep into the collections library implementation. It is a breeze
to use the library mostly, for example:

val (minors, adults) = people partition (_.age < 18)

%XW�WKH�LPSOHPHQWDWLRQ�LV�ZD\�PRUH�FRPSOH[�WKDQ�ZHȇUH�XVHG�WR�LQ�-DYD�
land. The internal complexity pays for power, though, and is probably
worth it. If you get stuck, the sources might be closer at hand than docs,
but try reading some documentation anyway, before peeking into the
source.

6. avoid the cake Pattern
Don’t believe people who tell you that Scala doesn’t need dependency
injection frameworks because of the cake pattern - thankfully, not many
people would go quite that far. Not all projects need DI, but where it has
worked in Java projects, it can work just as well in Scala projects.

2. avoid Scalaz

http://code.google.com/p/scalaz/
http://en.wikipedia.org/wiki/Category_theory
http://james-iry.blogspot.cz/2009/03/operator-overloading-ad-absurdum.html
http://james-iry.blogspot.cz/2009/03/operator-overloading-ad-absurdum.html
http://www.flotsam.nl/dispatch-periodic-table.html
http://scala.playframework.org/documentation/2.0/ScalaAnorm
http://scalaz.github.com/scalaz/scalaz-2.9.1-6.0.4/doc.sxr/scalaz/example/ExampleApplicative.scala.html
http://docs.scala-lang.org/overviews/collections/introduction.html
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di/

The cake pattern may suit many projects as well, but it makes the code
structure unnecessarily more complex, and may force you to use some
of the more advanced features of the type system that you could avoid
otherwise.

7. avoid getting stuck in the Kingdom of verbs
If Java is the Kingdom of Nouns, then Scala code can sometimes look like
it’s coming from the Kingdom of Verbs. You might see code like this:

Project.evaluateTask(�
DUJV�VNLSSHG
�).get.toEither.right.get.map(_.data.
WR85Ζ�WR85/).toArray

To be honest, such stringing of methods can happen in Java as well, but
seems less likely there. Not everything in the above snippet is technically
a verb, but there is a very long chain of methods with none of the
intermediate results being named.

If you look at this code without an IDE, it is nearly impossible to understand
what is going on because you know neither the types nor the names of
the things. Thank god point-free style doesn’t work in Scala, or it could be
worse.

Just give names to some of the intermediary results, eh? In other words,
your Scala code should be from the Kingdom of Sentences, where both
verbs and nouns are in equal standing. It is often possible to even mimic
simple natural language sentences without creating a full-blown DSL.

JoShSuereth:

One of the biggest issues with the Cake pattern, is that even when you know the cake pattern, the cost of
learning a new code base is high. When a team is spun up on the Cake, things become much easier to digest
DQG�ZRUN��ΖWȇV�FHUWDLQO\�VRPHWKLQJ�WR�LQYHVWLJDWH�IRU�\RXU�WHDP��EXW�LV�SUREDEO\�EHVW�DYRLGHG�ZKHQ�ȴUVW�FRPLQJ�
to Scala.

http://steve-yegge.blogspot.cz/2006/03/execution-in-kingdom-of-nouns.html
http://en.wikipedia.org/wiki/Point-free_style

8. avoid code that is either too functional, or too type safe
This is perhaps our most controversial point, but try not to go too much into the functional side of the language or to achieve maximal type safety. Scala
can clearly give you better type safety than Java in many cases, but there is a limit to everything. The type system is complex and if you dive very deep into
LW��\RX�PLJKW�MXVW�VSHQG�D�ORW�RI�WLPH�VDWLVI\LQJ�WKH�FRPSLOHU�IRU�OLWWOH�JDLQ�LQVWHDG�RI�ZULWLQJ�XVHIXO�FRGH��ΖWȇV�ȴQH�WR�RFFDVLRQDOO\�SOD\�ZLWK�VRPHWKLQJ�OLNH�
shapeless, but it might be too experimental to use in code your team is going to get paid to maintain.

JoShSuereth:

One mistake many people make when coming to Scala is preserving types unnecessarily. Since Scala promotes
Polymorphism and FP at the same time, it’s quite possible that you don’t need to preserve a type if you’re not
going to return it in a function. When people see the possibilities of type-safety, sometimes they take their
code too far, or add types which don’t add value.

When designing a library and using any feature, you need to ask the question: “Does this addition hold its
ZHLJKW"ȋ��$�JRRG�H[DPSOH�RI�WKLV�LV�WKH�
/LNH�FODVVHV�LQ�6FDODȇV�FROOHFWLRQV��7KHVH�DUH�XVHG�WR�SUHVHUYH�VSHFLȴF�
types when using generic methods. For example, calling the “map” method on a Vector will return a Vector.
There’s a bit of mechanical type jiggering to make this happen. Not the kind of code you show to someone
QHZ�WR�6FDOD��EXW�WKH�XVDJH�RI�WKH�OLEUDU\�UHPDLQV�VLPSOH�DQG�HDV\�WR�XQGHUVWDQG��7KHVH�DUH�WUDGH�R΍V�DQG�
judgement calls that can take time to learn.

https://github.com/milessabin/shapeless/

7KH�VDPH�LV�ZLWK�JRLQJ�WRR�IXQFWLRQDO��2IWHQ�LW�PDNHV�VHQVH�WR�XVH�ȵDW0DS�
RU�PDS�RYHU�2SWLRQ�YDOXHV�LQVWHDG�RI�LI�HOVH�H[SUHVVLRQV��%XW�ZULWLQJ�D�ORQJ�
FKDLQ�RI�ȵDW0DSV�ZLWKRXW�QDPLQJ�DQ\�LQWHUPHGLDWH�UHVXOWV�LV�QRW�D�JRRG�
style.

Overusing higher-order functions in hot code may create performance
problems. In some cases, you might even have to revert to more Java-
OLNH�FRGH�ZLWK�PXWDEOH�YDULDEOHV�DQG�ZKLOH�ORRSV�ȃ�6FDODȇV�IRU�ORRSV�DUH�
compiled to higher-order function calls, but while loops are low-level as in
Java or C. This should be improved in Scala 2.10, which adds some new for-
loop optimizations.

Still, functional programming is getting more and more popular for a
reason. Concurrency and correctness might be easier to achieve with more
functional code. So don’t stay completely on the imperative side of Scala
HLWKHU��RU�\RX�PLJKW�QRW�HQMR\�DV�PDQ\�RI�WKH�EHQHȴWV�DV�\RX�FRXOG�

$Q\�ODQJXDJH�KDV�VRPH�DQQR\LQJ�ZDUWV�ȃ�\RX�MXVW�OHDUQ�WR�OLYH�ZLWK�WKHP��'HFLGH�ZKHWKHU�\RX�ZDQW�WR�XVH�WKH�PRUH�
complex features only after becoming somewhat comfortable with the language. Or maybe you already are on good terms
ZLWK�VRPH�RI�WKHP�ȃ�ZHȇUH�QRW�WU\LQJ�WR�FKDQJH�\RXU�PLQG�DERXW�WKDW��ΖI�QRW��WKRXJK��NHHS�LQ�PLQG�WKDW�WKHVH�WKLQJV�DUH�
DOVR�SDUW�RI�WKH�6FDOD�FRPPXQLW\�LQ�LWȇV�GLYHUVLW\��DQG�LJQRULQJ�WKHP�FRPSOHWHO\�PLJKW�QRW�ZRUN�DV�ZHOO�ZKHQ�\RX�ȴQG�WKDW��
IRU�H[DPSOH��VRPH�RI�WKH�6FDOD�DQVZHUV�RQ�6WDFN2YHUȵRZ�RU�RQ�WKH�PDLOLQJ�OLVWV�DUH�RI�WKH�RSSRVLWH�PLQGVHW�

the thingS you muSt live with

2N��ZH�JRW�WKH�WKLQJV�WR�DYRLG�RXW�RI�WKH�ZD\�ȃ�LI�\RX�GLVFRYHU�WKHVH�DV�
you’re learning, thinking that’s the “right way” to develop in Scala, they
PLJKW�VFDUH�\RX�R΍��DQG�\RX�ZRXOG�EH�PLVVLQJ�RXW��ΖQ�6FDOD��WKHUH�LV�QR�
single “right way” to do things, for better or for worse.

Now we’ll look at some more things that are not quite perfect in Scala
land, but that you must simply live with, at least for now. For example,
the existence of the things to avoid, listed above -- you should be able
to coexist with the “deep end” of Scala while staying in the shallow end
yourself, and still write good code that is not too foreign even to Java
developers.

There are many libraries in Java that are internally divided into so many
layers of abstraction that they are extremely hard to debug or understand,
but that doesn’t take away from the value of Java itself. The same is true
for Scala, but as a newer and less popular language, there just isn’t a
comparable number of libraries that are really solid.

&RPSDUDWLYHO\��6FDOD�LV�VWLOO�LQ�WKH�HDUO\�GD\V�ZKHUH�-DYD�ZRXOGȇYH�KDG�(-%�
2 and Struts 1 as the pinnacle of web development. The language is still
that young, but perhaps this comparison�LVQȇW�TXLWH�ULJKW�ȃ�6FDOD�SUREDEO\�
QHYHU�KDG�DV�ELJ�RI�D�EOXQGHU�DV�(-%����DQG�ZHE�GHYHORSPHQW�ZLWK�6FDOD�LV�
not necessarily behind or ahead of web development with Java.
%XW�WKHUHȇV�VWLOO�D�ORW�RI�H[SORUDWLRQ�DQG�PDSSLQJ�RI�WKH�WHUULWRU\�JRLQJ�RQ��
ΖQ�WKH�-DYD�ZRUOG��PRVW�SHRSOH�ZRXOG�QRW�EODPH�WKH�-DYD�ODQJXDJH�IRU�(-%�
���7KH\�ZRXOG�MXVW�VWD\�FOHDU�RI�WKDW�VLQJOH�SDUW�RI�LW��%XW�ZLWK�6FDOD��VRPH�
folks are quick to blame the language or the community and ecosystem as
a whole for any particular misgivings.

And the Java world still hasn’t reached a consensus on the eternal
question: which web framework to use? And it never will, because no single
IUDPHZRUN�LV�SDUWLFXODUO\�DPD]LQJ��IRU�RQH�UHDVRQ�RU�DQRWKHU��'L΍HUHQW�
variables weigh into that choice each time.

So it is with Scala, that there aren’t always perfect solutions and evolution
is still happening -- and at a faster pace than in Java. Lets look at some of
the unavoidable issues we have to deal with.

1. Binary compatibility

2. a good ide is pretty much a requirement for

 understanding some code

3. compiler speed in conjunction with ide use patterns

 can slow you down

4. Scala is still evolving and getting new experimental

 features

http://blog.joda.org/2011/11/scala-feels-like-ejb-2-and-other.html

1. Binary compatibility
This is perhaps the biggest issue with Scala. Libraries compiled with one version will not necessarily work with the next or previous
YHUVLRQV��VR�WKH\�QHHG�WR�EH�UHFRPSLOHG�ZLWK�HDFK�YHUVLRQ�XSJUDGH��6%7�FDQ�GR�WKLV��FRPSLOH�DJDLQVW�PXOWLSOH�6FDOD�YHUVLRQV���DQG�
that is perhaps one of the main contributors to its relative popularity.

If some libraries don’t recompile, they will hold back users from moving to newer Scala versions, or alternatively force users to use
VRXUFH�GHSHQGHQFLHV�RU�HYHQ�UHVRUW�WR�IRUNLQJ��%XW�WKLQJV�KDYH�EHHQ�JHWWLQJ�EHWWHU�HYHQ�RQ�WKH�ELQDU\�FRPSDWLELOLW\�IURQW�

JoShSuereth:

This is a big issue, and one that in the Java world has been solved with slowed evolution of the
ecosystem. The Scala ecosystem is moving at a high enough velocity that binary compatibility
concerns sprout up in many places. We (Typesafe) are doing everything we can to lessen the burden
and improve the state of binary compatibility in the ecosystem. However, there’s cultures at war
here. Those coming from Java that expect things to just work and have few version issues and those
in the Scala community that want to rapidly advance their libraries.

Over the past year, we’ve seen quite a few improvements in this space. I think that trend will
continue for some time, especially with our (Typesafe’s) attention to the problem.

2. need an ide to understand some code
Ζ�SHUVRQDOO\�WKLQN�\RX�GHȴQLWHO\�QHHG�DQ�Ζ'(�IRU�GHYHORSLQJ�6FDOD�FRGH��DQG�
maybe even more so for reading code written by others. It is not as easy as
in Java to immediately see what a particular line of code does, due to more
constructs being available (such as implicit conversions and type inference). An
IDE that lets you jump to declarations and shows types when you hover over
something with an inferred type is essential in understanding some Scala code.

Thankfully, the Scala IDE for Eclipse is quite good since version 2.0, and the
IntelliJ IDEA plug-in might be even better from what we’ve heard.

3. compiler speed
7KLV�LV�WKH�ODUJHVW�LVVXH�WKDW�UHPDLQV�ZLWK�6FDOD�WRROLQJ�ȃ�ZKHQ�
\RX�KDYH�D�SURMHFW�ZLWK�WKRXVDQGV�RI�OLQHV�RI�FRGH�DQG�XVH�%XLOG�
Automatically in Eclipse, you might end up in situations where
changing a single line and saving will result in minutes of waiting.
Compiler speed is also something that is being worked on.

4. Scala is still evolving
New features are being proposed for and added to next versions
of the language, including value classes, control structure syntax
improvements and even compile time meta-programming. These, also
known as macros, can seem especially scary. In reality, macros are
optionally enabled and not exposed to most users.

Plus, there already are a many features in the language that you
shouldn’t use without good cause, as mentioned earlier. Library
authors would be wise to not jump at the chance of experimenting
with every new feature where they could do without. Of course, that
GRHVQȇW�JR�IRU�HYHU\WKLQJ�ȃ�VRPH�OLEUDULHV�PD\�UHDOO\�EHQHȴW�IURP�
these language evolutions.

There was even a new proposal (SIP-18) for disabling some language
features by default, which generated a huge comment thread on
the mailing list, but that seemed to be a storm in a teacup and the
proposal made it into Scala 2.10. One of the main reasons for the
proposal is a longer term direction for Scala that has the potential to
unify some of the hairier features of the type system into a simpler set
of rules.

JoShSuereth:

ΖȇP�D�KXJH�IDQ�RI�Ζ'(V�P\VHOI��ΖȇG�EH�ORVW�LQ�&���
-DYD�6FDOD�3\WKRQ�5XE\�ZLWKRXW�WKHP��:KLOH�Ζ�
don’t think it’s true that you absolutely need an
IDE, I do think that code discovery with IDEs,
especially in strongly typed languages like Scala,
is quite amazing. A good IDE can help you learn
a code base much quicker than grep and friends.
After learning a code base, is when I revert to
using text editors, not before. Call me crazy.

http://scala-ide.org/
http://blog.typesafe.com/getting-down-to-work
http://docs.scala-lang.org/sips/pending/value-classes.html
http://docs.scala-lang.org/sips/pending/uncluttering-control.html
http://docs.scala-lang.org/sips/pending/uncluttering-control.html
http://docs.scala-lang.org/sips/pending/self-cleaning-macros.html
http://docs.scala-lang.org/sips/pending/modularizing-language-features.html
https://groups.google.com/forum/?fromgroups=#!topic/scala-sips/W5CGmauii8A%5B1-25%5D

can We Find a Balance?

There are some issues everyone in
the community must live with when
they use Scala. It is not too much,
considering the power you are
getting from the language.

The Scala community is diverse,
perhaps even somewhat divided.
Some people with functional
programming background seem
condescending at times, and
probably think that the OO guys
don’t care enough about writing
better code. Many potential Scala
programmers with OO backgrounds
care about large code bases being
maintainable by any able team
member or new hire for years to
come. And until the functional side
has proven to the wider community
that programs written in the
functional and more abstract way
are as maintainable, their voice will
not be taken too seriously by the
larger group.

JoShSuereth:

I think the point here is that a lot of programmers feel strongly about what they
believe in. FP has a lot of merits when it comes to reasoning and restructuring
code. So much so, that many of us “math” nerds gravitate here, as it feels far
more natural and less “chaotic”. At the same time, Scala is a blended language.
(YHQ�ZKHQ�FRGLQJ�LQ�)3��WKH�LQWHUSUHWHUV�UXQWLPHV�XVXDOO\�KDYH�WR�PXFN�ZLWK�WKH�
PXWDEOH�ELWV��Ζ�WKLQN�6FDOD�R΍HUV�DQ�LQWHUHVWLQJ�VROXWLRQ�LQ�WKDW�ERWK�WKH�ȊSXUHȋ�DQG�
the “impure” code can live on two sides of a wall, in the same language.

Also, there are some domains which I think lend themselves more naturally
WRZDUGV�RWKHU�PRGHOV��Ζ�SHUVRQDOO\�EHOLHYH�WKH�*8Ζ�GHYHORSPHQW��LQ�LWV�FXUUHQW�
IRUP��LV�PRUH�QDWXUDO�LQ�DQ�22�SDUDGLJP��ZDOOHG�R΍�IURP�WKH�Ȋ)3ȋ�SRUWLRQ�RI�FRGH��
That said, I still have high hopes for Functional Reactive Programming.

Actors themselves are inherently not “pure functional”. However, I know from
experience that the Actor model is very ideally suited, and successful at modelling
concurrent processes and backend servers.

:KDW�DOO�ERLOV�GRZQ�WR��LV�WKDW�LQ�6FDOD�ZHȇUH�H[SORULQJ�PDQ\�GL΍HUHQW�VSDFHV��
<RXȇOO�DOZD\V�ȴQG�SURJUDPPHUV�ZKR�IHHO�VWURQJO\�DERXW�WKHLU�RZQ�SDUDGLJPV�DQG�
promote them. Healthy discussion and movement is great. I hope we all learn as
much as we can from the “functional side”, just as we have a lot to learn with the
new object-oriented features Scala brings to the table and actor-based designs.
6FDOD�LV�ODQJXDJH�ZKHUH�\RX�FDQ�OHDUQ�D�ORW�RI�GL΍HUHQW�WKLQJV��<RXȇOO�DOZD\V�
ȴQG�WKRVH�ZKR�SURPRWH�RQH�ZD\�RYHU�DQRWKHU��ΖWȇV�D�VLJQ�RI�D�YLEUDQW��KHDOWK\�
community.

ΖWȇOO�EH�LQWHUHVWLQJ�WR�VHH�ZKHWKHU�WKH�IXQFWLRQDO�WKHRUHWLFDO�DQG�22�
pragmatic side can achieve a more symbiotic coexistence and further
EULGJH�WKH�IXQFWLRQDO���22�JDS��RU�ZKHWKHU�WKH�JURXSV�ZLOO�GLYHUJH�HYHQ�
more. In any case, it helps if you know about this division when you start
with Scala. Get comfortable with the basic language features, and then
GHFLGH�ZKHWKHU�\RX�DQG�RU�\RXU�WHDP�ZDQWV�WR�NHHS�DYRLGLQJ�WKH�RWKHU�
side, or start expanding your horizons further.

It’s possible that Scala would become an even stronger Java alternative if
the community could bring in more pragmatic programmers who would
write solid libraries that don’t overuse symbols, avoid some of the more
complex type system features, maybe even stay more imperative than
functional (while still preferring immutability), and don’t go overboard with
the type safety.

ΖW�GRHVQȇW�PHDQ�WKH�PRUH�SXUH�IXQFWLRQDO�W\SH�WKHRUHWLFDO�H[SHULPHQWDO�
UHVHDUFK�VLGH�RI�6FDOD�VKRXOG�JR�DZD\�ȃ�WKH\�VKRXOG�DOO�EH�DEOH�WR�FR�H[LVW�
in some kind of symbiosis. We think this has been happening and will
continue.

What maKeS Scala a great language?

More intentional code
-Get rid of most of the boilerplate

DRYer code — repeat yourself less
�1R�QHHG�WR�ZULWH�W\SHV�LQ�HYHU\�GHFODUDWLRQ�ȃ�WKH\�DUH�XVXDOO\�LQIHUUHG
-More abstraction mechanisms means less copy & paste

More concise code
-It’s safe to assume 2-3 times less lines of code than equivalent Java.
�2FFDVLRQDOO\�WKH�GL΍HUHQFH�FDQ�EH�HYHQ�ELJJHU��RU�VPDOOHU��

Immutability is easier
�8VH�YDO��RU�OD]\�YDO��E\�GHIDXOW�LQVWHDG�RI�YDU�DQG�\RX�PLJKW�EH�VXUSULVHG����
 how seldom you really need mutability

Slightly more functional code
-Make your code more functional without radically changing your
 current programming style

Functional abstractions over collections
-Multi-line for-loops become one-liners when using lambdas

New ways to compose things
-Traits enable compositions that are impossible in Java

Pattern matching
- A huge improvement over if-else chains or switch statements

Java interoperability
-Your code can easily interact with existing Java code

Good performance
-Code can perform as well as Java, but some abstractions do have
 their overhead

JoShSuereth:

Josh Suereth: I think this is a key point pure
functional programmers have been screaming at
the rest of us. It’s often possible to create code
which is easy to reason through and retain good
performance. Having to track through several
GL΍HUHQW�VRXUFH�ȴOHV�WR�VHH�ZKR�PRGLȴHG�ȊYDU�[\]ȋ�
is nobodies idea of a good time, and we’ve all been
there. Keeping parameters immutable by default is
one of Scala’s great virtues.

We looked at the challenges of Scala complexity from the perspective of an object-oriented newcomer. Now for some thoughts on what is
VR�JUHDW�DERXW�6FDOD�LQ�WKH�ȴUVW�SODFH��WKDW�-DYD�GHYHORSHUV�VKRXOG�FRQVLGHU�XVLQJ�LW��$�GHWDLOHG�DFFRXQW�ZRXOG�WDNH�PRUH�ZRUGV�WKDQ�ZHȇYH�
space for here, but here’s a brief overview with links to relevant reading. This subset of Scala features forms a relatively simple language that
is still quite powerful.

http://en.wikipedia.org/wiki/DRY
http://vimeo.com/20290504

Scala features that should make you jump for joy

The exact set of favourite language features inevitably varies from person
to person, so feel free to let us know if you think there’s something you like
WKDW�ZH�RPLWWHG��%XW�KDYLQJ�VXPPHG�XS�VRPH�RI�RXU�IDYRXULWH�DVSHFWV�RI�
Scala, let’s look at the language features that enable these:

 1. case classes (a.k.a. algebraic data types)

 2. Pattern matching

 3. traits

 4. adding methods to existing classes

 5. Syntax

 6. no Primitives

 7. anonymous and higher-order functions

1. case classes (a.k.a. algebraic data types)
It’s amazing how easily you can write small classes for holding
data in Scala. Even if you don’t use getters and setters in Java, a
public data class is still so much code: it usually needs its own
ȴOH�ZLWK�LPSRUWV��HTXDOV��KDVK&RGH��WR6WULQJ�LPSOHPHQWDWLRQV�
and so on. In Scala, if you need a small data class you can often
DGG�LW�WR�DQ�H[LVWLQJ��VFDOD�ȴOH�DQG�MXVW�GHVFULEH�WKH�ȴHOG�QDPHV�
and types:

case class Person(ȴUVW1DPH��6WULQJ��ODVW1DPH��6WULQJ��DJH��ΖQW)

Case classes like this are immutable by default, like most data
classes should be. equals, hashCode and toString are generated
E\�WKH�FRPSLOHU��EDVHG�RQ�WKH�FRPELQDWLRQ�RI�WKH�ȴHOGV�

The compiler even adds a copy method, which uses current
values as default arguments. For example, on my birthday, I could
execute this code:

val newMe = me.copy(age = me.age + 1)

Think this is cool? Read more about case classes.

http://www.scala-lang.org/node/107

2. Pattern matching
Case classes interact quite well with pattern matching, which is like a more generalized switch
VWDWHPHQW��*LYHQ�RXU�3HUVRQ�FODVV�DERYH��ZH�FRXOG�GR�VRPH�PDWFKLQJ�RQ�GL΍HUHQW�SHUVRQV�OLNH�WKLV�

val aPerson: Person = ���ȴQG�D�SHUVRQ
val canDo = aPerson match {
 case Person(“Chuck”, “Norris”, _) =>
������KHUH�ZH�RQO\�FDUH�DERXW�&KXFN�1RUULV��DQG�QRW�KLV�DJH����&KXFN�1RUULV�LV�DJHOHVV�
������8QGHUVFRUH�LQ�6FDOD�XVXDOO\�PHDQV�ȊZLOGFDUGȋ�RU�ȊZH�GRQȇW�FDUH�DERXW�LWȋ
 true
 case Person(_, _, age) if (age >= 18) =>
������PDWFKHV�RQO\�DGXOWV�ZKR�DUH�QRW�&KXFN�1RUULV
 true
 case _ =>
������PDWFKHV�DQ\WKLQJ�HOVH��WKLV�LV�OLNH�WKH�GHIDXOW�FDVH�LQ�-DYDȇV�VZLWFK
������LI�\RX�OHDYH�LW�RXW�\RX�ZLOO�JHW�D�0DWFK(UURU�IRU�D�QRQ�PDWFKLQJ�REMHFW
 false
}

/LNH�PRVW�FRQWURO�VWUXFWXUHV�LQ�6FDOD��EXW�XQOLNH�WKRVH�LQ�-DYD��SDWWHUQ�PDWFKLQJ�LV�DQ�H[SUHVVLRQbȃ�LW�
FDQ�FRPSXWH�D�YDOXH��ZKLFK�LQ�RXU�FDVH�LV�D�%RROHDQ�WKDW�LV�WUXH�IRU�&KXFN�1RUULV�DQG�DGXOWV��EXW�IDOVH�
for everyone else. Only one of the cases is executed, there is no fall through and there are no break
instructions needed.

Pattern matching can also be a good replacement for the Visitor pattern. Read more about pattern
matching.

http://www.scala-lang.org/node/120
http://www.scala-lang.org/node/120

3. traits
Traits can be used exactly like interfaces in Java, but they can also contain implementation code. If
you have a complex type hierarchy, they make it easy to mix several aspects of the implementation
from separate traits into concrete classes.

)RU�H[DPSOH��OHWȇV�LQWURGXFH�DQ�2UGHUHG�WUDLW�WKDW�GHȴQHV���DQG�!�PHWKRGV�IRU�FRPSDULQJ�REMHFWV��
Implementations must only implement a compareTo method.

trait Ordered[T] {
 def compareTo(other: T): ΖQW����DEVWUDFW�PHWKRG��UHWXUQV����QHJDWLYH�RU�SRVLWLYH
 def >(other: T) = (this compareTo other) > 0
 def <(other: T) = (this compareTo other) < 0
}

���ZH�FDQ�PL[�2UGHUHG�LQWR�DQ�H[LVWLQJ�FODVV��LPSOHPHQW�FRPSDUH7R�DQG�JHW���DQG�!�IRU�IUHH�
val ChuckNorris = new Person(“Chuck”, “Norris”, 0) with Ordered[Person] {
 def compareTo(other: Person) = 1 ���&KXFN�1RUULV�LV�DOZD\V�JUHDWHU�WKDQ�DQRWKHU�SHUVRQ
}

ChuckNorris > Person(“John”, “Doe”, 22) == true

Of course, this small example isn’t perfect as it only gives us ChuckNorris > person but not person <
ChuckNorris. To get both, we’d change the Person class:

case class Person(�
���
�) extends Ordered[Person] {
 def compareTo(other: Person) ��
�LPSOHPHQW�RUGHULQJ�IRU�DOO�SHUVRQV�
�
}

Read more about traits.

http://www.scala-lang.org/node/126

4. adding methods to existing classes
You can, in a way, add methods to existing classes without changing their source code. This is useful
for various things, and is achieved by implicitly converting an object of one class to an object of a
ZUDSSHU�FODVV��7KH�PHWKRGV�DUH�GHȴQHG�RQ�WKH�ZUDSSHU�

For example, if we wanted to add a method that says whether a person is minor or an adult, we could
do this (note that this is Scala 2.10 syntax):

implicit class PersonWrapper(val p: Person) extends AnyVal {
 def minor = p.age < 18
 def�DGXOW� ��PLQRU
}

Person(“John”, “Smith”, 43).adult == true

It would perhaps be better if “extension methods” were implemented independently of implicits.
Implicit conversions hold some dangers and are easy to abuse, so you just have to remember to use
them responsibly. Read about some hints here.

5. Syntax
<RXȇYH�VHHQ�VRPH�RI�WKH�V\QWD[�LQ�WKH�H[DPSOHV�DERYH��ΖW�PLJKW�VHHP�RGG�DW�ȴUVW��ZLWK�WKH�W\SHV�
coming after names in declarations, but it is quite good once you get used to that change. It’s a
nice concise syntax and def compareTo(other: T): Int appears more readable to me than public int
compareTo(T other). As we saw above, one-liner methods are much nicer than Java equivalents, and
LQȴ[�PHWKRG�FDOOV�OHW�XV�GURS�WKH�GRWV�DQG�SDUHQWKHVHV�ZKHUH�ZH�ZDQW�WR��&KXFN1RUULV�!�SHUVRQ�LV�
equivalent to ChuckNorris.>(person)).

Generally, the syntax lets you do more with less, compared to Java.

http://twitter.github.com/effectivescala/#Types%20and%20Generics-Implicits

6. no Primitives
Scala hides the JVM primitive types from you. Everything is an object, everything can have methods.
The compiler will still decide to use primitives where it can, and boxes values where it can’t, but all you
see are objects. For example, the Scala library adds a the method to Int, such that 1 to 100 produces a
Range you can iterate over:

for (i <- 1 to 100) {
����GR�VRPHWKLQJ�D�����WLPHV
}

7. anonymous and higher-order functions
These barely need a mention. No modern language should exclude anonymous or higher-order
functions, and even Java will get them soon. They allow easier parallelization, creating custom control
structures and concise code for dealing with collections, among other things.

For example, lets say we often need to do something with all the adults in a collection of Persons. We
could create a higher-order method that allows mimicking control structure syntax:

def foreachAdultIn(persons: Iterable[Person])(WKXQN��3HUVRQ� !�8QLW) =
�SHUVRQV�ȴOWHU { p => p.adult } foreach { p => thunk(p) }

���QRZ�ZH�FDQ�ZULWH
foreachAdultIn(listOfPersons) { person =>
����GR�VRPHWKLQJ�ZLWK�SHUVRQ
}

http://www.scala-lang.org/node/133
http://www.scala-lang.org/node/134

*HQHUDOO\�VSHDNLQJ��WKH�EHQHȴWV�RI�6FDOD�KDYH�WKH�SRWHQWLDO�WR�RXWZHLJK�WKH�
disadvantages, if you know which side of the pool you’re diving into….you don’t
ZDQW�WR�KLW�\RXU�KHDG�RQ�WKH�ERWWRP�DIWHU�WKH�ȴUVW�MXPS�

The subset of Scala outlined above already makes the language a compelling
choice and should be enough to let you write more concise and intentional code
than in Java, but getting there is more challenging. The deeper parts of the Scala
VZLPPLQJ�SRRO�DUH�VRPHWLPHV�IXQ�WR�H[SORUH��EXW�FDQ�EH�VFDU\�DW�ȴUVW��2QFH�
comfortable with the simpler part, you can consider taking advantage of advanced
features and going further in the pure functional direction.

For questions or comments, please reach us at labs@zeroturnaround.com

concluSion looK Before You JumP in!

labs@zeroturnaround.com

alternative Jvm languages

Groovy has been the dynamic JVM lan-
guage of choice for years and this fact is
UHȵHFWHG�LQ�WKH�VXUYH\�UHVXOWV��DOWKRXJK�
we must admit feeling a bit suspicious
at the numbers. Groovy is also trying
to appeal to fans of static typing with
Groovy++, but Scala seems to have es-
tablished itself as the statically-typed Java
alternative on the JVM - a position which
newer languages such as Kotlin and Cey-
ORQ�ZLOO�ȴQG�KDUG�WR�RYHUWDNH�FRQVLGHULQJ�
Scala’s head start.

Clojure, JRuby and Jython remain as
rather niche languages, although Python
and Ruby are quite popular outside
of the JVM. However, considering the
plethora of JVM languages out there,
Clojure’s quick capture of even 1% of the
JVM developers is somewhat impressive. 2%

2%

11%

1%

grooVy

Scala

cloJure

JruBy

Jython

17%

So that was an opinion on adopting Scala in a team of Java programmers, while avoiding the hairier parts. Josh Suereth
provided some additional comments based on his own experiences.

Next up, we have an interview with Martin Odersky, founder of Scala. We ask for his opinion on some of the newer JVM
ODQJXDJHV�RXW�WKHUH��DVN�ZK\�LV�$NND�LPSRUWDQW��ZKHUH�DUH�6FDOD�DQG�7\SHVDIH�KHDGLQJ��ȴQG�RXW�KRZ�SRSXODU�6FDOD�DFWXDOO\�LV�
DQG�ZK\�LV�LW�PLVUHSUHVHQWHG�LQ�WKH�7Ζ2%(�LQGH[��)RU�WKH�ODWWHU��RXU�RZQ�developer productivity report showed that 11% of Java
users are using Scala to some extent, though that result has some bias.

interlude

http://zeroturnaround.com/labs/developer-productivity-report-2012-java-tools-tech-devs-and-data/

oliver - Hi Martin. First of all thanks for taking this time with
us. With me is Erkki Lindpere, author of “Scala: Sink or Swim?”
and Anton Arhipov, product lead for JRebel.

martin - Hi guys, nice to speak with you.

oliver- Ζ�JXHVV�P\�ȴUVW�TXHVWLRQ�ZRXOG�EH�WR�DVN�whether you
have you seen our Developer Productivity Report 2012 where
we showed that 11% of our respondents were using Scala on
at least some of their projects.

martin - I saw that, yes. That was actually quite encouraging.
Seems that we are slowly inching up to become a mainstream
technology, which is great.

oliver - $EVROXWHO\��:HUH�\RX�VXUSULVHG�DW�WKH�SHQHWUDWLRQ�RI�
Scala use?

martin - Well, 11% seems high for the overall developer
community. I think the explanation is probably that the more
innovative programmers would use both Scala and JRebel and
that’s why there’s a higher percentage than among the general
population. Among the population at large, I think we are
currently somewhere between 1-2% of the Java market overall
and still growing quite rapidly, almost a 100% year-over-year.
%XW�����IRU�\RXU�UHVSRQGHQWV�IURP�WKH�VXUYH\�LV�RI�FRXUVH�
great, that’s where we want to go.

oliver - In fact, we did realize that this was a concern and
there is some early adopter bias that we mention in the
report. We suggest that people who are more interested in
responding to an in-depth survey of this kind are a bit more
focused on checking out new technologies, being more
involved in the communities around Java and the ecosystem.
And we mention that there is some bias to be expected. We
GLG�VHH�VRPH�GL΍HUHQFHV�EHWZHHQ�RXU�ȴQGLQJV�DQG�7Ζ2%(�DQG�
5HG0RQN��DQG�\RXU�HVWLPDWH�RI����RI�-DYD�LV�DOVR�GL΍HUHQW��
:K\�LV�LW�VR�GLɝFXOW�WR�JHW�DFFXUDWH�XVHU�EDVH�LQIRUPDWLRQ�LQ�
the industry for things like this?

martin - I think the RedMonk study is actually better than
PRVW��EHFDXVH�DW�OHDVW�LW�FRUUHODWHV�WZR�GL΍HUHQW�WKLQJV���
*LW+XE�SURMHFWV�DQG�6WDFN2YHUȵRZ�TXHVWLRQV��ΖW�LV�RI�FRXUVH�
very biased towards open source, I would say. I imagine that if
you are behind the secrecy wall then you don’t dare to write a
6WDFN2YHUȵRZ�TXHVWLRQ���ZHOO�PD\EH�ZLWK�\RXU�SULYDWH�HPDLO�
DFFRXQW��EXW�QRW�ZLWK�\RXU�FRPSDQ\�DFFRXQW��%XW�Ζ�WKLQN�LWȇV�
probably the best we have.

Since this interview, both Scala and Haskell have risen
one point on the RedMonk survey: KWWS���UHGPRQN�FRP�
VRJUDG\������������ODQJXDJH�UDQNLQJV������

It could be that there is just not that much serious work being
GRQH�FRPLQJ�XS�ZLWK�D�JRRG�VXUYH\��)RU�LQVWDQFH��7Ζ2%(�LV�

interVieW With martin oderSKY

http://redmonk.com/sogrady/2012/09/12/language-rankings-9-12/
http://redmonk.com/sogrady/2012/09/12/language-rankings-9-12/

actually very simplistic. We did a study, because Scala was
doing pretty good around 2008 - we knew we were climbing
- but hasn’t progressed at all since then. So something must
have gone wrong and, ironically, what went wrong was that I
published a book called „Programming in Scala“ that led to a
lot of search terms (we tracked that) that said “Programming in
Scala”. Whereas in other languages you typically say e.g. “Java
programming”, so it’s the other way around.

ΖW�VR�KDSSHQV�WKDW�7Ζ2%(�VHDUFKHV�IRU�ȊODQJXDJH�SURJUDPPLQJȋ�
and not “programming in language”. If you correct for that bias
then there are two languages that do drastically better - one
is Scala and the other is Haskell. In Haskell, people also seem
to have a bias for saying “programming in Haskell” and not
“Haskell programming”. All the other languages are more or
less the same. That explains at least a large part of why we
DUH�GRLQJ�VR�EDG�LQ�7Ζ2%(���LWȇV�MXVW�DQ�DFFLGHQW�RI�ZKDW�VHDUFK�
terms people use.

oliver – That’s interesting. Hopefully we can start to
maybe reverse that trend a little bit because it seems
misrepresentative...we’ll say “Scala Programming” from now
on. Well, I’m glad to get your feedback on that and help us to
understand a little bit better. We know that research projects
DUH�DOZD\V�GLɝFXOW�LQ�WKLV�ZD\�

/HWȇV�FKDQJH�SDFH�D�OLWWOH�DQG�WRXFK�EULHȵ\�RQ�WKH�6FDOD�VHULHV�
that Erkki wrote and I co-edited, called “Scala: Sink or Swim?”.

It was a three-part series, which you actually commented on
and said there was some good analysis in it. Do you recollect
exactly which parts you thought would be most useful for new
Scala coders?

martin – From the start, Scala is a wide tent because it
lets you program in what is essentially Java style without
semicolons and it lets you do the most advanced parts of
IXQFWLRQDO�SURJUDPPLQJ�LI�\RX�VR�GHVLUH��7KH�ȴUVW�WKLQJ�WR�
know is that being more abstract and more functional is often
better but not always. There is no better or worse here. For
some problems and themes, a Java-like style is actually very
appropriate; for other problem areas, you want to be more
abstract. The second observation is that if you start with Scala
be prepared that you will make a journey.

It is very easy to pick it up - it only takes a couple weeks to be
ȵXHQW�LQ�6FDOD��%XW�WKHQ�LW�WDNHV�PXFK�ORQJHU�WR�DFWXDOO\�GR�WKH�
transition to becoming more abstract - to write more higher-
order functions, use functional collections to a larger degree.
Ideally learn the limits - being more functional is not always the
right thing to do.

For instance, it might be that if you have a very performance-
sensitive computation you might rather use a mutable map
because it conserves your memory better and it may be faster.
The real wisdom in all that is to essentially know when to use
functional, because it makes your code better to maintain, and

NQRZ�ZKHQ�WR�XVH�PXWDEOH��EHFDXVH�LWȇV�PD\EH�PRUH�HɝFLHQW�
for the problem domain at hand. It’s about judging the trade-
R΍V�FRUUHFWO\��7KDWȇV�ZK\�ΖȇP�YHU\�PXFK�DJDLQVW�WKH�SHRSOH�
who say that more functional is always better. There is always
D�WUDGH�R΍�DQG�\RX�KDYH�WR�PDNH�WKH�WUDGH�R΍�ULJKW��$QG�\RX�
have to make it for a team, because in the end having more
choice means having more decisions to make.

erkki – Martin, I wanted to ask was there anything you really
disagreed with in the posts?

martin – No, there was nothing that really got on my nerves.
It was all fairly reasonable. I didn’t agree 100% with you but it
was overall a very reasonable approach and opinion to have.

oliver – I think it’s the best compliment you will get from
DQ\RQH�IRU�D�ZKLOH��(UNNL��0DUWLQ��Ζ�LPDJLQH�SHRSOH�DVN�\RX�
about the future of Scala a lot and I am not going to do that,
but I will ask you what is your favorite answer to give them?

martin – Hehe. The answer I usually give is that the challenge
we all face is essentially how to cope better with parallelism
that’s on us with multicores and clusters and the challenges
of distributed computing, including mobility. Now you have
always a bunch of computations that go along together -
sequential computations are rapidly vanishing. The main
FKDOOHQJH�LV�UHDOO\�ȴQGLQJ�WKH�ULJKW�DEVWUDFWLRQ�PHFKDQLVPV�
to deal with it and functional programming can play a very
good role, though it can’t be the whole solution space. You

also need to have right concurrency abstractions and so on.
That’s where we see a future for Scala, because Scala brings
to the table a lot of important mechanisms and concepts that
let you program concurrent and parallel systems in a way that
is understandable for humans, where you don’t drown in the
accidental complexity given by the wrong model or the wrong
concurrency primitives.

oliver – Wow, I hope you guys understood that :-) On a slightly
related note… What do you think about some of the newer JVM
languages like Kotlin, Ceylon, Gosu... there seems to be a clear
LQȵXHQFH�RQ�WKHP�E\�6FDOD��'R�\RX�KDYH�DQ\�WKRXJKWV�RQ�WKDW"

martin – I’m always ready to welcome innovation and change
on the JVM. The more developments we have, the better. We
all want to overcome stasis - the chapter of programming is
closed where we thought we all could write programs in the
same way we did in the past forever. If we can break that up by
PDQ\�GL΍HUHQW�PHDQV��WKDWȇV�JRRG�

Languages like Clojure and JRuby, some of the more mature
ones, also have done very important things there. It’s
interesting to watch the languages, and what they do. Some
RI�WKH�LQQRYDWLYH�VWX΍�LV�YHU\�LQWHUHVWLQJ��6RPH�RI�WKHP�DUH�
still in the early phase so we have to watch how it turns out.
I know that many take Scala as the basis, they want to create
something just as good but simpler, that seems to be the
general consensus.

Essentially when you start out - and when we started out
with Scala it was the exactly the same thing - we wanted
to do something at least as good as the incumbent but
simpler. Often the realities of the environment force you to
do solutions that maybe in the end are not quite that simple.
7KDWȇV�VRPHWKLQJ�WKDW�SUREDEO\�HYHU\RQH�ZLOO�ȴQG�RXW�VRRQHU�
or later. I certainly want to be in a friendly competition with the
languages to see in the end what’s simplest overall....

My intention with Scala is very much to make it simpler in
the sense to make it regular and not throw a lot of language
features at it. That’s a misconception people often have, that
Scala is a huge language with a lot of features. Even though
that’s not generally true. It’s actually a fairly small language - it
will be much smaller than Java by the time Java 8 is out. The
GL΍HUHQFH�LV�WKDW�VLQFH�LW�JLYHV�\RX�YHU\�SRZHUIXO�DEVWUDFWLRQ�
mechanisms. You see a lot of features in libraries that get
mistaken for language features. That’s why we sometimes
get a mistaken reputation for being a very large and complex
language. Which we are not.

oliver – I’m glad we could clear that up. Erkki, I think you’ve
got a couple little more direct technical inquiries for Martin.
Would you like to ask a few questions now?

erkki – Yes. Since we got into the complexity thing... Earlier
in 2012, there was a really heated discussion in the mailing
lists about SIP-18 (Scala Improvement Proposal) - the one that

makes some of the language features optional. How’s it going
with that?

martin – It’s in, it’s accepted. It will ship with Scala 2.10. The
discussion has pretty much died down because it turned out to
not be very onerous to comply with SIP-18.

I think it was a bit of a storm in a teacup, and now it seems
to have calmed. I still think it’s the right thing to do precisely
because by design Scala is a very orthogonal and expressive
language, so teams using Scala have a large number of choices
available. Some of them need a little bit more guidance with
VRPH�RI�WKH�DUHDV�WKDW�ZH�NQRZ�DUH�GLɝFXOW��LQHYLWDEO\��WKHUH�
are hidden problems in some feature interactions, and power
can be easily misused. Scala’s philosophy is to be as general
as possible in its language design. The import mechanism was
invented to counter-balance that in the interest of software
engineering concerns.

I think it’s good to put some of the more easily misused
FRPELQDWLRQV�XQGHU�DQ�LPSRUW�ȵDJ��2QH�H[DPSOH�Ȃ�6FDOD�
has this very powerful notion of implicit conversions, which
I believe is the right thing to do because it lets us cleanly
interoperate with Java code and do other things which in the
end lead to code that is much simpler for the end user.

%XW�ZH�DOVR�IRXQG�WKDW�EHFDXVH�RI�WKHLU�YHU\�SRZHU�DQG�
because they look easy when you write them down, there’s a

tendency to overuse them. Afterwards If you have too many
FRQYHUVLRQV�WKH\�PLJKW�VWDUW�WR�EH�LQ�FRQȵLFW�ZLWK�HDFK�RWKHU��
and you get surprises. We decided to put implicit conversions
XQGHU�DQ�LPSRUW�ȵDJ�VR�\RX�KDYH�WR�GHPDQG�WKHP�H[SOLFLWO\�
now and be aware of what you are doing. When I applied the
ȵDJ�WR�WKH�FXUUHQW�6FDOD�FRPSLOHU�LWVHOI��Ζ�LQGHHG�IRXQG�VRPH�
misuses.

What happened was there was an implicit conversion which we
GHFLGHG�ZDV�D�EDG�LGHD��ΖW�ZDV�ȴUVW�PDGH�DYDLODEOH�XQLIRUPO\�
everywhere in the compiler, and we rejected that a while
DJR�DQG�UHPRYHG�LW��%XW�WKHQ�Ζ�GLVFRYHUHG�WKDW�LQ�DERXW����
instances people had reinstantiated that same conversion
ORFDOO\�IRU�WKHLU�FRGH��%HFDXVH�LWȇV�FRQYHQLHQW�WR�GR�VR��6R�QRZ�
you have essentially the same conversion we tried to remove
before and you have code duplication. As a manager who’s
concerned with code quality, that’s the kind of thing you want
to discover.

JoShSuereth:

One thing that SIP-18 is designed to allow
is the addition, deprecation and removal of
language features within Scala. Scala is a
steadily progressing language, and the core
team needs the ability to undo decisions
that turned out to be poor ideas. Placing a
ODQJXDJH�IHDWXUH�EHKLQG�D�ȵDJ�LV�DQ�H[FHOOHQW�
deprecation path to replace it with something
better or more powerful. That’s the goal behind
WKH�KLJKHU�NLQGHG�W\SHV�EHLQJ�EHKLQG�D�ȵDJ��ΖQ�
the future we hope a better solution is added
to the language, and need to leave door open
for improvements. In that same vein, the new
IHDWXUH��PDFURV��DUH�EHKLQG�D�ODQJXDJH�ȵDJ��
This represents their new status, and that we’re
unsure if we’ve ironed out all the nuances of
them. It gives us room to adapt them over the
QH[W�IHZ�UHOHDVHV�ZLWKRXW�ORFNLQJ�LQ��8VHUV�
who wish to try “experimental” language
features are welcome and encouraged to do
so. As experimental features stabilize, we can
UHPRYH�WKH�ȵDJ�IURP�WKHLU�XVDJH��DQG�WKH�
general community can welcome a more stable,
VROLGLȴHG�IHDWXUH�

erkki – Another thing that I’m very interested in but haven’t tried myself is the Akka framework. What are the
advantages it gives to JVM developers?

martin – I think Akka is the next generation concurrency runtime, where concurrency means you program
typically with message passing actors, and it’s transparent to whether it runs on the same computer or whether
it runs on the Internet. And it has an excellent story on failure.

So essentially when things fail, an Akka system is extremely resilient because every actor is supervised by
another actor. We all know that concurrent programming is very hard. Akka is a set of best practices that have
been learned for the most part over the last 20 years with Erlang. Erlang pioneered this actor concept and this
supervision concept. It’s a set of those best practices paired with a really high performance implementation -
Akka is very, very fast.

JoShSuereth:

In addition, Actors let you orient your exception handling around system components rather than lexical scope.
Often it’s easier to determine how to reboot your search index, or image server than what to do if the image server
throws an exception when called.

7KH�$FWRU�PRGHO�OHWV�\RX�PRGHO�UHFRYHU\�DW�D�WRSRORJLFDO�V\VWHP�OHYHO��7KLV�VKLIW�RIWHQ�PDNHV�LW�HDVLHU�SRVVLEOH�WR�
ȴJXUH�RXW�ZKDW�WR�GR�RQ�IDLOXUH��:KLOH�\RX�FDQ�GR�WKLV�ZLWK�VWDQGDUG�H[FHSWLRQ�KDQGOLQJ��WKH�ȊVXUIDFH�DUHDȋ�\RX�KDYH�
to work with is often large and unstructured. Enter concurrency, and the thread that has the exception may not be
the thread that caused the exception.

Ζ�EHOLHYH�WKH�DFWRU�PRGHO�SD\V�R΍�WKH�PRVW�LQ�IDXOW�WROHUDQFH�EHFDXVH�RI�WKLV��&RPELQHG�ZLWK�WKH�JUHDW�SHUIRUPDQFH�
numbers, and I think you’ll see a lot of enterprise shops and projects migrate towards Actors on the JVM.

To give you one example, we have a testing cluster of 192
cores and tested Akka on that - essentially just message
WKURXJKSXW�RI�DFWRUV�DQG�YHU\�IDVW�FRQWH[W�VZLWFKHV��%XW�ZH�
found scalability problems.

7KH�WKLQJ�VFDOHG�QLFHO\�XS�WR���FRUHV��WKHQ�LW�ZDV�ȵDW�
afterwards. We looked at it and couldn’t believe it. We
suspected the hardware and we had people come in to
troubleshoot it, but no, it didn’t go beyond 7. In the end we
found out that it was a limitation in the fork-join framework - in
the scheduler.

We pushed the scheduler so hard that it was caving in
and wouldn’t get faster anymore. Once we talked to [Java
Concurrency expert and Typesafe advisor] Doug Lea about
it, Doug said: “Oh yeah, I’ve suspected that for a long time, so
QRZ�Ζ�KDYH�D�WHVW�FDVH��([FHOOHQW�ȋ�DQG�ZH�SXW�LQ�WKH�FKDQJHV�
and since then it scales up nicely. It just shows that essentially
to get there you have to optimize a lot of the other things that
haven’t been discovered before; you never got to this high
number of context switches and message passes that we see
now with Akka. So it’s a very nice platform.

anton – Hi Martin, Anton here. I have a question for you
UHJDUGLQJ�D�SURMHFW�Ζ�UHFHQWO\�UHGLVFRYHUHG�IURP�Ζ%0�FDOOHG�
X10. What amazed me was that it really reminds me of
Scala when I look at the code. With regards to Scala’s future
- distributed programming and concurrency etc, can you
FRPSDUH�VRPHKRZ�WR�;��"�ΖW�VHHPV�WKDW�LWȇV�D�OLWWOH�ELW�GL΍HUHQW�

approach than what you have taken in Akka, because X10
is more a port of MPI to Java. Can you tell a little bit more in
comparison to that one?

martin –�7KHUH�ZDV�FHUWDLQO\�DQ�LQȵXHQFH�IURP�6FDOD�WR�;����
I think an early X10 prototype was actually written in Scala
before they had their own bootstrap compiler. A lot of the
V\QWD[�DQG�VRPH�RI�WKH�LGHDV�FDPH�IURP�6FDOD��2QH�GL΍HUHQFH�
I see is that X10 is essentially a language that has a particular
approach to high-performance programming - it has a lot of
IHDWXUHV�LQ�WKH�ODQJXDJH�WKDW�DUH�RSWLPL]HG�IRU�180$���1RQ�
8QLIRUP�$FFHVV�0HPRU\��6WDUWLQJ�ZLWK�DV\QF��D�W\SH�V\VWHP�
with regions and things like that. Whereas Scala is a language
that relegates much more things to the libraries.

$NND�KDVQȇW�LQȵXHQFHG�6FDOD�WKH�ODQJXDJH��LWȇV�MXVW�D�OLEUDU\�
that builds on top of the JVM concurrency abstractions and
uses Scala features and parallel collections. In a sense Scala is
a smaller language -- the footprint of the language by itself is
not optimized for that space whereas X10 is. That’s the main
GL΍HUHQFH��:HȇUH�YHU\�PXFK�LQ�WKH�VDPH�VSDFH��EXW�ZH�GR�LW�LQ�
the libraries where X10 does in part in the language.

anton - Lately I noticed that they have made good progress on
WKH�SURMHFW��%HFDXVH�WKH�ȴUVW�WLPH�Ζ�VDZ�LW�ZDV�OLNH�LQ������RU�
2005.

martin - It started as a research language, as a DARPA
(Defense Advanced Research Projects Agency) project. There

were 3 companies doing hardware and languages together
for next-generation supercomputing applications. There was
6XQ�ZLWK�)RUWUHVV��Ζ%0�ZLWK�;���DQG�&UD\�ZLWK�&KDSHO��7KRVH�
3 languages share a common heritage, which is this DARPA
UHVHDUFK�SURMHFW��Ζ%0�KDV�QRZ�SXVKHG�;���WR�EH�D�ODQJXDJH�
that is independently funded. I am not sure who funds it within
Ζ%0�EXW�LW�LV�FHUWDLQO\�LQGHSHQGHQW�RI�WKH�'53�SURMHFW�QRZ�

oliver – I know we only have a few minutes left, but I have one
ȴQDO�TXHVWLRQ�IRU�\RX��<RX�KDYH�EHHQ�WKH�&KDLUPDQ�DQG�WKH�
Chief Architect for Typesafe - where James Gosling and Doug
Lea are on the board of directors, I understand - since earlier
in 2011. We wanted to know if forming Typesafe has changed
anything about your work with Scala, and as a follow up
question, what do you feel is the most innovative aspect about
Typesafe’s vision and goals? Does this relate to Scala or not?

martin –�ΖW�KDV�FKDQJHG�WZR�WKLQJV��%HIRUH��ZH�VLPSO\�
designed the language and were not really concerned much
with what people did with it. We were glad that people did
LQWHUHVWLQJ�VWX΍�ZLWK�LW�EXW�LW�ZDVQȇW�UHDOO\�RXU�FRQFHUQ��:H�
published the language and watched what other people did
with it.

Now we are very much in a middleware stack -- we have Akka,
ZH�KDYH�3OD\��RQ�WRS�RI�$NND��$QG�ZH�UHDOO\�KDYH�D�IRFXV�RQ�
optimizing the whole stack so that essentially Akka runs well
DQG�WKHUH�LV�QR�FRQȵLFW�EHWZHHQ�ZKDW�$NND�GRHV�DQG�ZKDW�
Scala libraries are. We also have a good integration between
Play and Akka.

The other thing that happened on Typesafe was that I am now
much closer than before to customers that do actually very
LQWHUHVWLQJ�VWX΍��8QIRUWXQDWHO\�PRVW�RI�WKDW�VWX΍�Ζ�FDQȇW�WDON�
DERXW�\HW�

%XW�LWȇV�H[WUHPHO\�LQWHUHVWLQJ�WR�VHH�ZKDW�WKH\�GR�ZLWK�LW�DQG�
what challenging problems they have to solve with it and how
we can help them doing that. So that was very interesting to
actually get out of the ivory tower and really see what people
do with your things and what challenges they face.

About the mission: what we want to do is essentially the
next generation middleware that works for concurrency and
distribution. Think of it as as J2EE for the next decade. Instead
of having the current problem of connecting the database to
some webpages, you will now have the problems of dealing
concurrency, distributed computing, possibly with the inclusion
RI�PRELOH�FRPSXWLQJ�DQG�\RX�QHHG�D�ȵH[LEOH�PLGGOHZDUH�IRU�
that. That’s what Typesafe aims to provide, what we do with
Play, Akka and on top of the Scala foundation.

We want to do that for both Scala programmers and also Java
programmers. So everything has a Java interface as well.

The next thing we’re going to come out with is a database
connection layer called Slick, which essentially takes a couple
of pages from the books of Microsoft LINQ, a relational
approach to databases, rather than an object-relational
approach that you see in Hibernate. It’s a pure relational
approach which we believe is actually very suitable to be

integrated in a functional language like Scala. It’s a very good
ȴW�IRU�WKDW�

oliver – ΖW�GRHV�VRXQG�SUHWW\�VOLFN�

martin – Thank you.

oliver – Well, Martin, it’s been a pleasure to chat with you
again. Thanks for your time.

martin - Thank you guys, talk to you soon.

Rebel Labs
 is the re

search &
content

division o
f ZeroTurnar

ound

Contact U
s

Estonia
�OLNRROL�����WK�ȵRRU
Tartu, Estonia, 51003
Phone: +372 740 4533

labs@zeroturnaround.com

USA
����%R\OVWRQ�6W����WK�ȵU�
%RVWRQ��0$��86$�������
Phone: 1(857)277-1199

